
Recovering Traceability between Features and Code in
Product Variants

Lukas Linsbauer
Johannes Kepler University

Linz, Austria
k0956251@students.jku.at

Roberto E.
Lopez-Herrejon

Johannes Kepler University
Linz, Austria

roberto.lopez@jku.at

Alexander Egyed
Johannes Kepler University

Linz, Austria
alexander.egyed@jku.at

ABSTRACT
Many companies offer a palette of similar software prod-
ucts though they do not necessarily have a Software Product
Line (SPL). Rather, they start building and selling individ-
ual products which they then adapt, customize and extend
for different customers. As the number of product variants
increases, these companies then face the severe problem of
having to maintain them all. Software Product Lines can
be helpful here - not so much as a platform for creating new
products but as a means of maintaining the existing ones
with their shared features. Here, an important first step is
to determine where features are implemented in the source
code and in what product variants. To this end, this pa-
per presents a novel technique for deriving the traceability
between features and code in product variants by match-
ing code overlaps and feature overlaps. This is a difficult
problem because a feature’s implementation not only covers
its basic functionality (which does not change across prod-
uct variants) but may include code that deals with feature
interaction issues and thus changes depending on the com-
bination of features present in a product variant. We em-
pirically evaluated the approach on three non-trivial case
studies of different sizes and domains and found that our
approach correctly identifies feature to code traces except
for code that traces to multiple disjunctive features, a rare
case involving less than 1% of the code.

Categories and Subject Descriptors
D.2.7 [Software Engineering]: Distribution, Maintenance,
and Enhancement; D.2.13 [Software Engineering]: Reusable
Software

General Terms
Algorithms, Theory

Keywords
Product Variants, Features, Traceability

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SPLC 2013, August 26-30, 2013, Tokyo, Japan
Copyright 2013 ACM 978-1-4503-1968-3/13/08 ...$15.00.

1. INTRODUCTION
It is common practice for companies to sell variants of

a software product, typically to support different customer
needs. These product variants share code (often quite ex-
tensively) but they also differ from one another and exhibit
unique features or feature combinations not shared with oth-
ers (i.e., to cover specific customer needs). Unfortunately, of-
ten such product variants are not developed and maintained
as Software Product Lines (SPLs) [17]. Instead, these com-
panies tend to build separate product variants where a new
product variant is typically combined from various exist-
ing variants. This phenomenon has been observed in many
domains including commercial partners in the avionics and
steel manufacturing domain we work with. Our experience
tells us that companies rarely build a common code base for
these product variants with the ability to switch features on
or off [9]. The reasons are at times technical (e.g., it may not
be possible to compile a single product for different operat-
ing systems), are based on economic factors (e.g., code as an
intellectual property is not made available unless paid for),
or may even be mandated (e.g., certifying a safety critical
system with dead – aka switched-off code – is undesirable).
Whatever the reasons, these situations all have in common
that variations of software products exist which are created
and maintained separately.

Separately maintaining variations of (similar) product vari-
ants poses unique challenges. Bug fixes that affect shared
features may need to be replicated across multiple products
and, even more challenging, a feature may undergo evolu-
tionary changes with successive product variants. In addi-
tion to the feature’s functionality, software engineers must
also define how the feature is supposed to interact with other
features (or not to interact) in an adaption of the feature
interaction problem. And they must do so separately in ev-
ery product variant. We observed that maintaining product
variants works well for a limited number of variants but as
this number increases so does the complexity of maintaining
the variants. This is the point where we observe companies
to express interest in a transition to SPLs.

The traditional view of SPLs is a forward-engineering one
where we first decide on possible features and variants that
we may want to support. SPLs can also be helpful in a
reverse-engineering manner as a means of maintaining the
commonalities and differences among existing product vari-
ants. In earlier work, we demonstrated how to compute
feature models from product variants [8]. This work lays
the foundation for building a shared code base for these
product variants - by computing the traceability between

features and code. This step is necessary because compa-
nies typically only know which features are implemented in
which product variants but they do lack precise knowledge
where in the code these features are implemented.

The specific goal of this paper is thus to establish the
traceability between features and code with the additional
challenge of distinguishing the part of a feature that is the
same in every product where the feature appears versus the
parts of a feature that change depending on the combina-
tion of features present in a product (i.e., the code that im-
plements feature interactions). Our algorithm determines
traceability by matching code overlaps and feature overlaps
between product variants. The precision of the algorithm
thus depends on the ability to distinguish individual fea-
tures. Fortunately, we do not require a product variant for
every possible feature combination. Rather, to distinguish
any two features, we typically only require one product with
and one without the feature. By matching these sets, we
obtain code fragments that belong to individual features or
groups thereof. Only in cases where features always occur
together are we unable to exactly distinguish what code frag-
ment belongs to which feature individually; however, even
here we can still determine the traceability of both features
together. Naturally, this implies that the precision of our
algorithm is dependent on the number of product variants
available (because then it is increasingly likely we get all
necessary feature combinations).

As a first step we implemented our approach on the code
granularity level of class methods and fields to demonstrate
both scalability and correctness. We argue that this ap-
proach in principle also works on other levels of granular-
ity, e.g. statements. We evaluated our approach on three
case studies where we recovered traceability among 11-14
features and between 600-21,000 code fragments. Out of
all these code fragments, less than 1% could not be traced
correctly, in some cases because there were mistakes in the
source code of the case studies (e.g. dead code that should
have been removed from a product) and in others because
code traced to multiple disjunctive features.

2. BACKGROUND AND EXAMPLE
The driving goal of our work is to provide support for

maintaining collections of related product variants or for
reverse-engineering such product variants into a software
product line by automatically extracting traceability infor-
mation between features and source code. We start off with
a set of programs which we assume are currently maintained.
Therefore for each program we initially know the functional-
ity it provides and hence the features that it contains and its
source code. By comparing these programs with each other
we derive associations between parts of the source code and
features or feature interactions. In this approach we assume
that products which have common features also have com-
mon code, and that this common code implements exactly
these common features. The automated traceability extrac-
tion is thus currently limited to code pieces with a unique
trace as will be discussed in sections 3 and 5. As a first step,
the focus of our work was at the code granularity level of
classes, methods and fields. The results we obtained at this
level encourage us to tackle granularity below this level as
part of our future work.

c1 Point Line.startPoint
c2 Point Line.endPoint
c3 void Line.paint(Graphics g)
c4 Line.Line(Point start)
c5 void Line.setEnd(Point end)
c6 Line.Line(Color color, Point start)
c7 List Canvas.lines
c8 void Canvas.wipe()
c9 void Canvas.setColor(String colorString)

Figure 1: Unique Code Pieces

2.1 Example: Draw Product Line (DPL)
The example we use to illustrate our approach consists of

four product variants. We will refer to the SPL formed with
these four variants as the Draw Product Line (DPL). DPL
variants are simple drawing programs with different capabil-
ities – depending on the selected features of the product –
such as drawing lines and rectangles, wipe the drawing area
clean, or select a color to draw with. Their feature combi-
nations and code are shown in this section along with the
necessary background to understand the underlying theoret-
ical model of our work.

A feature list FL is a set containing all the features avail-
able in a certain domain. In our example, we assume a fea-
ture list FL = {LINE, WIPE, COLOR}. A feature set of a prod-
uct is a 2-tuple (sel, sel) where sel is the set of features that
are selected in the product and sel is the set of features that
are not selected. The products’ feature sets can also be de-
scribed in form of a feature set table as shown in Table 1,
there is a row for each product and a column for every fea-
ture in the SPL. If a product provides a feature there is a
mark in the corresponding field. In other words, each row
represents the feature set for the corresponding product [8].

The code snippets for the example products we will use
are shown in Code Listing 1. For each of the four products
the classes Line and Canvas are shown. Product1 is from
Line 1 to Line 11 and Product2 from Line 13 to Line 22.
The class Line looks the same for both. But in the class
Canvas there is no method wipe for Product2 as the feature
WIPE is not part of it. Product3 is from Line 24 to 34. The
constructor of class Line at Line 28 now also contains a
parameter for the color. The old constructor was removed.
And the class Canvas contains a method for setting the color
at Line 33. Product4 is from Line 36 to Line 47 and is
the same as Product3 with the only difference that in class
Canvas at Line 46 the method wipe is present again. This
code base gives us a number of unique code pieces to work
with. A code piece can either be a method or a field. They
are summarized in Figure 1.

The products can also be described via feature algebra
as presented in the work of Feature Oriented Software De-
velopment (FOSD) [12]. We use this algebraic notation to

Products Wipe Line Color Feature Sets

Product 1 X X ({W, L}, {C})
Product 2 X ({L}, {W, C})
Product 3 X X ({L, C}, {W})
Product 4 X X X ({W, L, C}, {})

Table 1: Feature Set Table

1 /* Product 1 (WIPE , LINE) */
2 class Line {
3 Point startPoint , endPoint;
4 void paint(Graphics g) {...}
5 Line(Point start) {...}
6 void setEnd(Point end) {...}
7 }
8 class Canvas {
9 List lines = new LinkedList ();

10 void wipe() {...}
11 }
12
13 /* Product 2 (LINE) */
14 class Line {
15 Point startPoint , endPoint;
16 void paint(Graphics g) {...}
17 Line(Point start) {...}
18 void setEnd(Point end) {...}
19 }
20 class Canvas {
21 List lines = new LinkedList ();
22 }
23
24 /* Product 3 (COLOR , LINE) */
25 class Line {
26 Point startPoint , endPoint;
27 void paint(Graphics g) {...}
28 Line(Color color , Point start) {...}
29 void setEnd(Point end) {...}
30 }
31 class Canvas {
32 List lines = new LinkedList ();
33 void setColor(String colorString)

{...}
34 }
35
36 /* Product 4 (COLOR , WIPE , LINE) */
37 class Line {
38 Point startPoint , endPoint;
39 void paint(Graphics g) {...}
40 Line(Color color , Point start) {...}
41 void setEnd(Point end) {...}
42 }
43 class Canvas {
44 List lines = new LinkedList ();
45 void setColor(String colorString)

{...}
46 void wipe() {...}
47 }

Code Listing 1: DPL product snippets

describe our traceability mining algorithm more precisely.
The idea is that a product can be composed by adding fea-
tures. Features are written in uppercase letters. For example
Product1 is composed by extending feature LINE with fea-
ture WIPE, written as WIPE(LINE). This is called a feature
expression.

Each feature consists of modules, which represent its im-
plementation. The base module [12] of a feature contains
the code that is always present in a product that has this
feature, independent of any other features that may or may
not be present. However, a module cannot add code that
is already added by another module. This means a piece of
code is assumed to be unique to a module, i.e. every piece of

code has a unique trace. A base module is denoted in lower-
case letters. For example, the base module of feature LINE

is denoted as line. It contains the code of class Line that
is always there if the feature LINE is selected. This means
the constructor is not part of the base module, because it
changes depending on other selected features. All products
have the feature LINE, but not all have the same constructor
in class Line.

The feature WIPE in Product1 also consists of another
module δline/δWIPE which is called a derivative module [12].
It contains the changes the feature WIPE makes to the module
line. In case of Product1 there is no source code associated
with that module and there are no changes. A change can
be the addition of code as well as the alteration or removal of
code. This interpretation is different to the one presented in
[12] in that we allow the removal of code as will be explained
in Section 3.3. Derivative modules basically model the in-
teraction of features, how features influence each other. For
example, only the combination of a number of specific fea-
tures makes a certain piece of code necessary (or respectively
unnecessary). There are also higher order derivatives like
δ2color/δLINEδWIPE in Product4. It represents the changes
that features LINE and WIPE make to module color. So the
principle is the same, there are just more features involved.
This example models the interaction of three features.

There are two operations on modules that allow us to com-
pose them [12]. The first operation is + which is a binary
operation that unifies the code of two base modules. The
code of two base modules is disjoint. The second opera-
tion is • which either composes two derivative modules into
a composite derivative module or weaves the changes of a
derivative module into a base module yielding a so called
woven base module.

With these two operations the relationship between a fea-
ture expression and the corresponding module expression
that implements it can be defined as shown in Figure 2 for
the four products of Table 1. For example, Product3 is com-
posed by applying feature LINE to feature COLOR as can be
seen in its feature expression. The product is implemented
by the respective base modules line and color which con-
tain the code that is always present for these features. In
addition the changes that feature LINE makes to the base
module color are woven into module color in the form of
the derivative δcolor/δLINE.

As can be seen the module expressions grow very fast
with the number of features. A product with n features has
a feature expression consisting of n features and a module
expression consisting of 2n−1 modules. Notice that modules
are separated by operations + or •.

Now we have our examples set up. We know for each of
our example products their features, their module expres-
sions and their source code. The ideal solution to the stated
problem would be to know for each piece of source code to
which module it belongs and the pieces of source code each
module consists of. In practice however, it will not be pos-
sible to isolate every module. There may be modules for
which their source code could not be distinguished, for ex-
ample because two modules never exist without each other.

3. TRACEABILITY MINING ALGORITHM
In this section we present an algorithm for tracing prod-

ucts’ features in their source code. The algorithm expects
as input a number of products with their corresponding fea-

[Product1] = [WIPE(LINE)] =

wipe + δline/δWIPE • line

[Product2] = [LINE] = line

[Product3] = [LINE(COLOR)] =

line + δcolor/δLINE • color

[Product4] = [WIPE(LINE(COLOR))] =

wipe + δline/δWIPE • line+

δ2color/δLINEδWIPE •
δcolor/δLINE • δcolor/δWIPE • color

Figure 2: Products in Feature Algebra

ture sets and code. For example, Product1 with features
LINE and WIPE. This product consists of only two features
as its feature expression WIPE(LINE) shows. The correspond-
ing module expression however consists of three modules:
the base modules line and wipe and the derivative module
δline/δWIPE. Each of these modules consists of its own code
(if any). The algorithm then computes what code belongs
to which modules.

3.1 Basic Insight
The general idea behind this algorithm is the observation

that products that have features in common will also have
code in common and vice versa. A product is defined as
a tuple where the first element is its feature set, accessed
via product.f, and the second element is the set of code it
contains, accessed via product.c:

product = (featureset, codeset)

Note that it is not sufficient to just look at a product’s fea-
tures as the above example shows, because the interactions
between features, which are exactly the derivatives, would
be left out. So instead of looking at products’ features in
their feature expressions we look at the modules in their
module expressions.

The modules that two input products have in common
are then associated with the code these same two products
have in common. Assume Product1 and Product2 as input.
Product2 consists of only one module, which is the base
module line. The code these two products have in common
is therefore associated with the base module line. The re-
maining code in Product1 is left for the base module wipe

and the derivative δline/δWIPE.
The basic concept behind this is to treat products as as-

sociations between modules and code. We define an asso-
ciation to be a tuple where the first element is the set of
modules and the second element is the set of code:

association = (moduleset, codeset)

We access an association’s moduleset via association.m
and its codeset via association.c. For Product1 and Product2
these associations initially are:

association1 = a1 =

({line, wipe, δline/δWIPE} , {c1, c2, c3, c4, c5, c7, c8})

wipe

δline/δWIPE

line

line wipe

δline/
δWIPE

line

a1.m a2.m a'1.m a'2.m

a3.m

m
o
d
u
l
e
s
e
t
s

[WIPE(LINE)] [LINE]

c1
c2 c3 c4
c5 c7 c8

c8

c1
c2 c3 c4
c5 c7

c1
c2 c3
c4 c5
c7

a1.c a2.c a'1.c a'2.c

a3.c

c
o
d
e
s
e
t
s

Product1 Product2

Figure 3: Intersection of Product 1 and Product 2

association2 = a2 =

({line} , {c1, c2, c3, c4, c5, c7})

Associations are then intersected by respectively intersect-
ing their module sets and their code sets (see Figure 3). By
doing so, it is possible to obtain new associations that are
added to the list or alter existing associations. For example,
after intersecting these two associations the set of associa-
tions is:

association
′
1 = a

′
1 = (a1.m \ a2.m, a1.c \ a2.c) =

({wipe, δline/δWIPE} , {c8})

association
′
2 = a

′
2 = (a2.m \ a1.m, a2.c \ a1.c) =

({} , {})

association3 = a3 = (a1.m ∩ a2.m, a1.c ∩ a2.c) =

({line} , {c1, c2, c3, c4, c5, c7})

The existing associations are altered by removing the el-
ements in the intersection from their modules and code.
The intersection is added as new association3. For ex-
ample, code c8 which corresponds to method wipe in class
Canvas (see Figure 1) is now associated with modules wipe

and δline/δWIPE in association a′1 and code c1 which cor-
responds to field startPoint in class Line (see Figure 1) is
associated with the module line in association a3 as dis-
played in Figure 3. This intersection process is repeated as
new product sets are integrated. At the end, every feature
and every piece of code appear exactly once. This means
that a piece of code can only belong to a single module.
Therefore our algorithm has the following limitation:

Unique Trace Limitation. A piece of code that does
not have a unique trace, i.e. traces to multiple modules,
will either: i) not be assigned to any module, ii) be assigned
to only one of the modules, or iii) be assigned to another
module, depending on the configurations of product variants
used as input.

3.2 From Features to Modules
The algorithm starts with just the features of each prod-

uct, so it needs to calculate the modules. A product with a
set of n features has a module expression with 2n − 1 mod-
ules. The modules are obtained by building the powerset of

c1
c2 c3 c5
c6 c7 c9

c6
c9

c1
c2 c3 c4
c5 c7

c1
c2 c3
c5 c7 c4

line

color/δLINE

color

line color

δcolor/
δLINE

line

[LINE(COLOR)] [LINE]
Product3 Product2

m
o
d
u
l
e
s
e
t
s

c
o
d
e
s
e
t
s

Figure 4: Intersection of Product 3 and Product 2

the set of features without the empty set:
moduleset = P(featureset.sel)\{∅}. For Product1:

moduleset = P({LINE, WIPE})\{∅} =

= {{LINE}, {WIPE}, {LINE, WIPE}}

Sets with exactly one feature represent the base modules
and sets with more than one feature (e.g. {LINE, WIPE})
represent the derivatives. There is no order in a set, so
δline/δWIPE has to be equal to δwipe/δLINE in order for
this to be legitimate. For our algorithm it does not matter
in what order the features are added, it is only important to
know whether two features interact or not, so we can easily
assume that is the case.

{LINE, WIPE} = δline/δWIPE = δwipe/δLINE

3.3 Dealing with Code Removal
An limitation for this approach so far is that code can

only be added. Modules are not allowed to remove code.
So we have to find another way to model such effect. As-
sume we have a base module line which adds some pieces
of code {c1, c2, c3, c4, c5, c7} to a program. Then we add
the feature COLOR, and therefore the modules color and
δline/δCOLOR, to the program. Module color adds some
code just as module δline/δCOLOR does. But δline/δCOLOR
also removes code c4 (the old constructor) from the program.
At this point the question arises whether code c4 was part
of the base module line to begin with. If it is not always
present when the module line is present, then it is obviously
not a part of it. But where else would it belong?

This is actually exactly what happens with the examples
Product2 and Product3. Their intersection is shown in Fig-
ure 4. One can see, that code c4 has no corresponding mod-
ules. The intersection of the modules at that point is empty.

Indeed, in a situation like this the code could be left over
without any modules to associate it with. It also should be
noted that this problem only applies to derivatives, as base
modules could not remove code from a module other than
itself, which would make no sense.

Negative Features. Instead of having a derivative remove
a piece of code c4 we would rather have another derivative
add this same piece of code. But it does not fit into any
of our derivatives we have so far. So we introduce negative
features. For every feature F there is now also its negation
¬F. This leaves us with many new derivatives to work with.
We can now associate c4 with the derivative δline/δ¬COLOR.

So instead of having δline/δCOLOR remove c4 we are now
having δline/δ¬COLOR add c4. We have yet to define what
exactly this means though and how we want to interpret
such modules containing negative features. For example,
δline/δ¬COLOR could be interpreted as the derivatives of
line and anything that is not color, but that is not what we
want. Such an interpretation would just be an abbreviation
for a list of other derivatives. It could also be interpreted
as a synonym for the one derivative of line and all features
except color. But this is also not what we want. We want
δline/δ¬COLOR to be its own module, with its own unique
code, that does not have anything to do with other modules.
And that is exactly how we interpret and use these modules.

With negative features, the feature and module expres-
sions of our products now look different (see Figure 5). Each
feature expression now contains every feature in the feature
list exactly once, either positive or negative. Therefore each
product consists of 2N−1 modules now, where N is the num-
ber of features in the whole feature list (not just the features
that are implemented by the product as before), only that
modules containing only negative features/modules can be
left out. Negative features/modules only make sense as a
derivative with at least one positive feature/module.

[Product1] = [¬COLOR(WIPE(LINE))] =

(¬color) + δwipe/δ¬COLOR • wipe+

δ2line/δWIPEδ¬COLOR •
δline/δ¬COLOR • δline/δWIPE • line

[Product2] = [¬WIPE(¬COLOR(LINE))] =

(¬wipe + δ¬color/δ¬WIPE • ¬color)+

δ2line/δ¬WIPEδ¬COLOR •
δline/δ¬COLOR • δline/δ¬WIPE • line

[Product3] = [¬WIPE(LINE(COLOR))] =

(¬wipe) + δline/δ¬WIPE • line+

δ2color/δLINEδ¬WIPE •
δcolor/δLINE • δcolor/δ¬WIPE • color

[Product4] = [WIPE(LINE(COLOR))] =

wipe + δline/δWIPE • line+

δ2color/δLINEδWIPE •
δcolor/δLINE • δcolor/δWIPE • color

Figure 5: Products in Feature Algebra with negative
Features

For example, taking a closer look at Product3 in Figure
5. The feature expression now contains one more feature,
namely ¬WIPE. It is now explicit that the feature WIPE is
not implemented by this product. This also reflects in the
corresponding module expression. The first module ¬wipe
in parenthesis can be omitted as it is negative and does not
interact with any positive features or modules. The second
module δline/δ¬WIPE however makes sense, as the imple-
mentation of the positive feature LINE can be influenced by
feature WIPE not being present. In this case the base module
line contains code that is always present if feature LINE is

present. In addition, the module δline/δ¬WIPE adds code
that is specific to the implementation of feature LINE if fea-
ture WIPE is not present.

3.4 Algorithm Pseudo-Code
The following helper functions are used in the algorithm:

• NOT(featureset): Negates all features contained in the
set. For example:
NOT ({LINE, WIPE}) = {¬LINE,¬WIPE}.

• POW(featureset): Generates the powerset of the set
(without the empty set and without modules consist-
ing only of negative features/modules). This basically
generates the modules for a set of features. For exam-
ple:
POW({LINE,¬WIPE}) = {{LINE}, {LINE,¬WIPE}}.

The first part of the algorithm prepares all the input prod-
ucts for processing by converting them into initial associa-
tions. Each of these associations obtains its code from the
corresponding product. The modules are calculated as the
powerset of the union of the features of the product and the
negated version of the features not contained in the product.
The second part of the algorithm does the actual process-
ing. One initial association after the other is processed and
new associations are added to the final list of associations
to be returned. The algorithm is shown in pseudo code in
Algorithm 1. Some optimizations like not adding empty as-
sociations or merging associations that contain modules but
no code are not shown to keep it simple.

Assume Product1 and Product2 as input for this algo-
rithm. From line 5 to 14 the initial associations and data
structures are prepared as follows:

association1 =

({line, wipe, δline/δWIPE, δline/δ¬COLOR,
δwipe/δ¬COLOR, δ2line/δWIPEδ¬COLOR} ,

{c1, c2, c3, c4, c5, c7, c8})

association2 =

({line, δline/δ¬WIPE, δline/δ¬COLOR,
δ2line/δ¬WIPEδ¬COLOR} ,

{c1, c2, c3, c4, c5, c7})

init assocs = {association1, association2}

associations = {}

We start with an empty set associations to be returned
by the algorithm and add associations as we iterate over
init assocs at line 16. Each initial association is inter-
sected with every association in the associations set. We
start with association1. As associations is still empty
there are no associations to intersect it with, the loop at
line 19 is not entered. The remainder, which is equal to
association1, is added to the set as it is at lines 33 and 34.

remainder = result1 = association1
1

associations = {result1}
1resultx and associationx are auxiliary variables to ex-
plain the algorithm, they do not appear in the code.

Algorithm 1 Traceability Mining Algorithm

Input: A List of Products (products),1

A List of all Features (FL)2

Output: A List of Associations (associations)3

4

{convert products into initial associations}5

init_assocs := {}6

for p in products begin7

association := (8

POW (p.f.sel ∪ NOT (FL \ p.f.sel)),9

p.c10

)11

init_assocs := init_assocs ∪ {association}12

end13

associations := {}14

{iteratively process initial associations}15

for a in init_assocs begin16

remainder := (a.m, a.c)17

new_assocs := {}18

for a2 in associations begin19

intersection := (20

remainder.m ∩ a2.m,21

remainder.c ∩ a2.c22

)23

remainder := (24

remainder.m \ a2.m,25

remainder.c \ a2.c26

)27

{alter existing association}28

a2.m := a2.m \ intersection.m29

a2.c := a2.c \ intersection.c30

new_assocs := new_assocs ∪ {intersection}31

end32

associations := associations ∪ new_assocs ∪33

{remainder}34

end35

return associations36

The next association to be processed is association2. It
is intersected with result1 from line 20 to 31, as it is now
in the associations set resulting in the following new asso-
ciations:

result1 = ({wipe, δline/δWIPE,
δwipe/δ¬COLOR, δ2line/δWIPEδ¬COLOR} , {c8})

remainder = result2 =

({δline/δ¬WIPE, δ2line/δ¬WIPEδ¬COLOR} , {})

intersection = result3 =

({line, δline/δ¬COLOR} , {c1, c2, c3, c4, c5, c7})

result1 is altered (at lines 29 and 30) and remainder and
intersection are added as new results (at lines 33 and 34).

associations = {result1, result2, result3}

As there are no more initial associations the algorithm
is done and the associations set is returned as result. It
contains all the associations that could be extracted. At
this point every module and every piece of code appear ex-
actly in one association, no matter in how many of the input
products they originally appeared in. This means one can
now look up which code pieces implement which modules

by looking at the association that contains the module of
interest and the associated code. However, if the associa-
tion contains more than that one module then it may also
contain additional code implementing other modules. As
these modules could not be separated, their code could not
be separated either. These modules that appear together
in one association could not be separated from each other
because they never appeared separately in any of the input
products. In these cases either an additional input product
has to be added from which the necessary information can
be extracted or the separation has to be done manually as
a post-processing step.

4. EXPERIMENTAL SETTING
An overview of the implemented system2 is shown in Fig-

ure 6. We now describe each of the steps it consists of.

Parser

Product Line

Feature Model Code Templates

Generator

DPL

VOD

Traceability
Mining

F
1

C
1

P
1

F
2

C
2

F
n

C
n

...

P
2

P
n...

output (associations)

Validator

original methods, fields and features
(products, FL)

equal yes/no

1

2

3

5

4

Program
Variants

ArgoUML

Figure 6: System Overview

Step 1: Product Line and Feature Model. It should
be noted that to the best of our knowledge there are no
publicly available software repositories from which evolved
program variants could be readily mined. Thus, in order to
emulate more product variants to evaluate our approach, for
some of our case studies we took existing product lines and
generated products according to their feature models. The
generated products are then used as input for our algorithm
to see how well it performs.

Step 2: Templates and Generator. This part of the
system sets up the testing environment. We need it to gen-
erate products (the Java source files) from a product line so
we can use them as input. For that purpose we have the
whole source code of a product line in the form of templates
where each piece of code is guarded with certain features.
The templates are parsed by the code generator using the
Apache Velocity template engine [1] or the JavaPp [3], de-
pending on the product line. Code Listing 2 shows an ex-

2Source Code: http://www.sea.jku.at/traceability/
source

VOD ArgoUML MM

Mandatory Features 6 3 6 1

Optional Features 5 8 8 1

Possible Products 32 256 7 1

Lines of Code 5.3K+ 340K+ 5K+
Classes (*.java Files) 42 1915 50
Fields 392 4452 223
Methods 249 16676 422
Unique Code Pieces 642 21128 645
Associations (with Code) 5 26 22
Correctness [%] 100 99.4 99.6
Performance [sec] 0.9 45 1.3
Distinguishability 63.8 7.8 3060.8
1 Estimated values.

Table 2: Case Studies Data Summary

cerpt from the Velocity template file for the class Canvas.
The lines 2 and 3 are only included in the product if feature
LINE is selected.

1 #if ($LINE)
2 protected List lines =
3 new LinkedList ();
4 #end

Code Listing 2: Template snippet of class Line

Step 3: Parser. For every given product used as input,
the parser reads the features from a text file and extracts all
the code elements from the Java source files using the Java
Compiler API [5]. The extracted code is on the granularity
of class methods and fields.

Step 4: Traceability Mining. This is the core of our
approach. The extracted code and features are fed into the
algorithm as well as into the validator for later verification.
The algorithm computes associations between modules and
source code (fields and methods) as output.

Step 5: Validator. The validator receives the original
products as well as the output from the algorithm as input.
With the traceability information provided by the algorithm
the validator reconstructs products with the same features as
the original products. The reconstruction is done for each
input product separately by taking the features it imple-
ments and generating the code elements as the union of the
code elements of the output associations corresponding to
these features:

P ′ = Reconstruct(P.f, associations)

where P ′ is the reconstructed product and P is the corre-
sponding original product. As final step, each reconstructed
product’s code elements are compared to the original prod-
uct’s code elements.

5. EVALUATION
An overview of the case studies used for evaluation is

shown in Table 2. It proved difficult to get hands on real
world software variants that fit our scenario. Therefore for
our first two case studies we used existing SPLs from which
we generated a number of variants and treated them as if
they were independently developed. This is sufficient to

http://www.sea.jku.at/traceability/source
http://www.sea.jku.at/traceability/source

show the correctness of our approach. The third case study
however, was taken as is from [4]. In the following we present
our evaluation criteria and the results obtained in our three
case studies.

5.1 Evaluation Criteria
Based on the experimental setting, we identified three cri-

teria for assessing our algorithm.

Definition 1. Correctness is the average percentage of
code overlap between each original input product and its cor-
responding reconstructed product (see Section 4 Step 5) using
the extracted traceability information.

Correctness =
1

n
∗

n∑
i=1

|Pi.c ∩ P ′
i .c|

|Pi.c ∪ P ′
i .c|

where n is the number of products used as input, Pi is an
original input product and P ′

i is the corresponding recon-
structed product.

If all original products are reconstructed in this manner
and the comparison shows that they are equal then the ex-
tracted traceability information must be correct, at least for
the given products. That would mean a 100% value for this
metric.

Our algorithm may only err in incorrectly assigning a code
element to a module. Consider now that there are two
modules and let us assume that our algorithm incorrectly
assigns a code element to module1 although it belongs to
module2. For any product that includes both modules, this
error would remain undetected because together they ex-
hibit the right code elements. However, for any product that
contains one of the modules only, the product would either
be missing a code element or have an extra code element.
Hence, the need to assess correctness by reconstructing and
comparing all products used by the algorithm.

Definition 2. Performance is the execution time of the
traceability mining algorithm, not including the experimental
setup such as the generation of products or the parsing of the
original source code.

The execution times were measured on an Intel R© CoreTM

i5 Sandy Bridge with 8 GB of memory.

Definition 3. Distinguishability is the average cardinal-
ity of all module sets whose respective associations contain
code and at least one module.

Distinguishability =
1

n
∗

n∑
i=1

|associationi.m|

where n is the number of associations that contain code and
at least one module and associationi is such an association.

The optimal value for this metric is 1, meaning every as-
sociation containing code has exactly one module. The mea-
sure is important because our approach can only distinguish
modules if one of them appears in at least one product in
which the other doesn’t. Consider, for example, mandatory
features that all products must have. As they always appear
together and never without each other, the corresponding
modules and code cannot be distinguished.

5.2 Case Study: Video On Demand (VOD)
The Video On Demand (VOD) product line consists of

simple video streaming applications. We generated all pos-
sible products and used them for evaluation. The achieved
correctness was at 100% with a performance of 0.9 seconds.
The distinguishability was at 63.8. The lower bound for the
number of modules possible in an association due to manda-
tory features in this case study is at 26 − 1 = 63.

5.3 Case Study: ArgoUML-SPL
The ArgoUML-SPL is the SPL for the UML Modelling

Tool ArgoUML [6, 2]. Again all possible products were gen-
erated and used for the evaluation. The achieved correctness
was at 99.4%. Only 150 code pieces out of 21128 could not be
associated with the correct modules, in fact, they were not
associated with any module at all, since for these code pieces
multiple traces existed (see details in Section 5.5 Analysis).
The distinguishability was at 7.8 modules per association
containing code with the lower bound for the number of
modules in an association at 23 − 1 = 7.

5.4 Case Study: MobileMedia (MM)
The third case study we evaluated has 7 product variants

obtained from a system called MobileMedia (MM). In con-
trast to the previous case studies, each variant corresponds
to an evolutionary step of the system development [4]. The
features for each product were assigned manually by infer-
ring them from the corresponding paper [7]. The number of
features ranges from 6 for the smallest to 14 for the largest
product.

With all 7 product variants as input the achieved correct-
ness was at 99.6%. Only one piece of code could not be
assigned to a module. Taking a closer look at this piece re-
vealed that it was accidentally left over in one of the prod-
ucts where it was not needed anymore. It was correctly
assigned after removing it from this product. So in a way
our algorithm pointed us at a mistake in one of the original
products which we then corrected.

The distinguishability for this case study was 3060.8. This
is due to the very small subset of the possible products for
this number of features used as input. Most of the modules
are higher order derivatives that don’t exist in the form of
code anyways (see Section 5.5 Analysis). Removing all mod-
ules with an order higher than 1 (no interactions between
more than 2 features) led to a distinguishability of 7.14 while
having no influence on the correctness.

5.5 Analysis
In our experiment, we found that some pieces of code

could not be associated with any module. The reason is
that, generally speaking, such pieces of code appear in dis-
junctive features. For example, product P1 uses piece of code
c in feature A, product P2 uses the same piece of code in fea-
ture B, while c is annotated with a condition to include it if
feature A OR feature B is implemented. Even though the two
products do not share any common feature they do share a
common piece of code. Thus code c does not have a unique
trace, because it is added by multiple disjunctive features
and therefore would have to be traced to multiple modules.
And currently our approach is limited to code pieces with
unique traces. More details will be available in [11].

Another reason for code not being associated with mod-
ules can be mistakes in the input products, for example when

0

10

20

30

40

50

60

70

80

90

100

0 1 2 3 4 5 6 7 8 9 10

N
um

be
ro
fD
er
iv
at
iv
e
M
od
ul
es

w
ith

th
at
O
rd
er

Order of Derivative

VOD
ArgoUML

Figure 7: Number of modules per order of derivative
for ArgoUML and VOD

code was not removed from products where it didn’t belong
to anymore. In a way, our algorithm points out those mis-
takes.

In addition to the correct modules, pieces of code were
often also associated with a large number of higher order
derivatives that, if they existed (in the form of code), would
be implemented in this code, which our system cannot know.
So basically our algorithm indicates that such code can be-
long to any (or several) of these modules. In order to avoid
that, one could set a threshold for the maximum order that
derivatives may have. For example one could assume that
in a certain product line, no more than 4 features interact
(depending on the coupling). Therefore, derivatives with an
order higher than 3 could be omitted. This may drastically
improve both the performance as well as the distinguishabil-
ity and have almost no negative impact on the correctness if
the threshold is chosen wisely. It also should be noted, that
most of these derivative modules seemed to stem from the
undistinguishable mandatory features. Most of the other
derivatives could be separated and filtered out (there was
no code associated with them). A possibility to avoid that
would be to represent all the mandatory features with one
single representative feature, as they can’t be separated any-
way.

In Figure 7 the number of modules with respect to their
number of interacting features (which is the order of the
derivatives) are shown for VOD and ArgoUML. VOD con-
tains more higher order derivatives than ArgoUML, partially
because it has more mandatory features that cannot be dis-
tinguished. The highest order of derivatives that would have
been possible for both is 10, as both happen to have 11 fea-
tures. Also, one of the base modules in VOD does not show
up because it has no source code at our current code granu-
larity level of methods and fields. Figure 8 shows the number
of extracted associations after each additional product that
is considered. Only roughly the first 15% of the products
provide new associations (this depends on the selected fea-
tures of the products and in what order they are processed).
The remaining products help to get rid of extra derivatives.
This shows us, that it would by far not have been neces-
sary to generate all possible product variants and all higher
order derivatives, which would have dramatically decreased
the runtime and wouldn’t be possible in a real world scenario
anyway. MobileMedia is not included in the plots because
our information about it is not complete as we did not gen-
erate the variants ourselves.

0

3

6

9

12

15

18

21

24

27

30

33

16 32 48 64 80 96 112 128 144 160 176 192 208 224 240 256
0

1

2

3

4

5

6

7

8

9

10

11
2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

N
um
be
ro
fA
ss
oc
ia
tio
ns
fo
rA
rg
oU
M
L

N
um
be
ro
fA
ss
oc
ia
tio
ns
fo
rV
O
D

Number of added Products for ArgoUML

Number of added Products for VOD

ArgoUML
VOD

Figure 8: Number of Associations per added Prod-
uct for ArgoUML and VOD

6. THREATS TO VALIDITY
In practice only few product variants may be available for

input and the automatically extracted traceability informa-
tion may therefore be rather coarse grain.

The product variations we studied were maintained con-
sistently and thus did not exibit evolutionary differences like
bug fixes or feature extensions/changes.

For example a bug fix that was performed on Product1 but
not on Product2 would then appear as a feature difference
because it is a difference in code. However, this problem only
appears in cases where products are no longer maintained
(or maintained differently). This is often not the case in
practice where it is desired to maintain all variations for as
long as they are needed. Obsolete products may no longer
be maintained but their traceability may thus also no longer
be important.

Additionally, the fact that our approach (for now) does
not investigate method bodies shields it from smaller vari-
ations and it remains unaffected. Only if bug fixes require
larger code changes (including new methods and their calling
behavior) we may be affected. However, such larger changes
also often go together with feature changes/extensions in
which case they can be handled as composite features (ex-
tended feature Fext1 is like feature F1 + F′1).

7. RELATED WORK
For this work we were using only very basic clone detec-

tion techniques just above the level of plain string compari-
son (see clone detection techniques in the work of Roy et al.
[13]); we compared code pieces based on their unique Java
signatures (e.g. fully qualified class names in combination
with method signatures). Comparisons of method bodies on
statement level will provide more detailed traceability and is
a necessary step towards automatically reverse-engineering
a Software Product Line from product variants. We argue
that such more advanced clone detection techniques can be
utilized in combination with our work presented in this pa-
per to improve the quality and level of detail of the extracted
traceability information, without significantly changing our
approach.

The work of Siegmund et al. aims to predict non-functional
properties of SPL’s products by generating and measuring
a small set of product variants and approximating each fea-
ture’s non-functional properties [16]. Our approach works
similarly in that we also extract information from a set of

product variants, only that we aim to extract each feature’s
source code instead of non-functional properties.

Ziadi et al. present a partially automated approach to
identify features from source code of product variants in or-
der to help migrate software product variants into a product
line [19]. With the same goal in mind, our approach aims to
extract traceability information from product variants about
which the features are already known.

The work of Rubin et al. aims at generating a product line
out of related products [14] by comparing and matching ar-
tifacts of these products and merging those that are similar.
Their focus is on the formal specification of a product line
refactoring operator that puts individual products together
into a product line. In [15] they suggest two heuristics for
improving the accuracy of feature location techniques when
locating distinguishing features. These heuristics are based
on information available when looking at multiple product
variants together by comparing the code of a variant that
contains a feature of interest to one that does not. The fea-
tures of interest are implemented in the unshared parts of
a program which they call a diff set. In the algorithm we
presented in this paper we also make use of the informa-
tion that becomes available when comparing product vari-
ants with each other and looking at features and source code
they share and don’t share.

Xue et al. discuss problems when using information re-
trieval techniques to identify features and their implement-
ing code when applied to a collection of product variants. To
overcome this problems they present an approach to improve
feature location in product variants by exploiting common-
alities and differences of product variants by software dif-
ferencing and formal concept analysis so that information
retrieval techniques achieve satisfactory results [18].

In the work of Kaestner et al. they examine the impact
of the optional feature problem of product lines by means
of two case studies and survey different solutions and their
trade offs [10]. This problem is also relevant in this paper
where we capture dependencies between the implementa-
tions of features by means of derivatives, regardless whether
these features are independent in the domain or not.

8. CONCLUSIONS AND FUTURE WORK
We introduced an algorithm to extract traceability infor-

mation between features as well as feature combinations and
code in product variants, on the level of class fields and
methods. We evaluated our approach with three case stud-
ies of different sizes and complexity. More than 99% of the
code pieces were correctly assigned in a matter of seconds,
even with large products like the ones from the ArgoUML-
SPL. The remaining code pieces that could not be assigned
to modules fall under our unique trace limitation.

As part of our future work we plan to: i) extend the
algorithm to work on granularity below method level, e.g.
statements or expressions, including changes in the order-
ing. This would open the possibility of leveraging advanced
clone detection methods, ii) relax or eliminate the unique
trace limitation to allow more accurate tracing and handle
non-assigned code pieces, iii) enhance the algorithm with
static and dynamic analysis of programs, and iv) perform
a more detailed evaluation of our algorithm with more case
studies as well as only using subsets of all possible product
variants.

9. REFERENCES
[1] Apache velocity. http://velocity.apache.org/.

[2] Argouml-spl project. http://argouml-spl.tigris.org/.

[3] Javapp project. http://www.slashdev.ca/javapp/.

[4] Mobilemedia.
http://sourceforge.net/projects/mobilemedia/.

[5] Source code analysis using java 6 apis.
http://today.java.net/pub/a/today/2008/04/10/source-
code-analysis-using-java-6-compiler-apis.html.

[6] M. V. Couto, M. T. Valente, and E. Figueiredo.
Extracting software product lines: A case study using
conditional compilation. In CSMR, pages 191–200.
IEEE Computer Society, 2011.

[7] E. Figueiredo, N. Cacho, C. Sant’Anna, M. Monteiro,
U. Kulesza, A. Garcia, S. Soares, F. C. Ferrari, S. S.
Khan, F. C. Filho, and F. Dantas. Evolving software
product lines with aspects: an empirical study on
design stability. In ICSE, pages 261–270. ACM, 2008.

[8] E. N. Haslinger, R. E. Lopez-Herrejon, and A. Egyed.
Reverse engineering feature models from programs’
feature sets. In WCRE, pages 308–312. IEEE
Computer Society, 2011.

[9] S. Hutchesson and J. A. McDermid. Towards
cost-effective high-assurance software product lines:
The need for property-preserving transformations. In
SPLC, pages 55–64, 2011.

[10] C. Kästner, S. Apel, S. S. ur Rahman,
M. Rosenmüller, D. S. Batory, and G. Saake. On the
impact of the optional feature problem: analysis and
case studies. In SPLC, pages 181–190, 2009.

[11] L. Linsbauer. Reverse engineering variability from
product variants. In Master’s Thesis, Johannes Kepler
University Linz, to appear in 2013.

[12] J. Liu, D. Batory, and C. Lengauer. Feature oriented
refactoring of legacy applications. In Proc. of 28th int.
conf. on Software engineering, ICSE ’06, pages
112–121, New York, NY, USA, 2006. ACM.

[13] C. K. Roy, J. R. Cordy, and R. Koschke. Comparison
and evaluation of code clone detection techniques and
tools: A qualitative approach. Sci. Comput. Program.,
74(7):470–495, 2009.

[14] J. Rubin and M. Chechik. Combining related products
into product lines. In FASE, volume 7212 of Lecture
Notes in Computer Science, pages 285–300. Springer,
2012.

[15] J. Rubin and M. Chechik. Locating distinguishing
features using diff sets. In ASE, pages 242–245. ACM,
2012.

[16] N. Siegmund, M. Rosenmüller, C. Kästner, P. G.
Giarrusso, S. Apel, and S. S. Kolesnikov. Scalable
prediction of non-functional properties in software
product lines. In SPLC, pages 160–169, 2011.

[17] F. J. van d. Linden, K. Schmid, and E. Rommes.
Software Product Lines in Action: The Best Industrial
Practice in Product Line Engineering. Springer, 2007.

[18] Y. Xue, Z. Xing, and S. Jarzabek. Feature location in
a collection of product variants. In WCRE, pages
145–154. IEEE Computer Society, 2012.

[19] T. Ziadi, L. Frias, M. A. A. da Silva, and M. Ziane.
Feature identification from the source code of product
variants. In CSMR, pages 417–422. IEEE, 2012.

	Introduction
	Background and Example
	Example: Draw Product Line (DPL)

	Traceability Mining Algorithm
	Basic Insight
	From Features to Modules
	Dealing with Code Removal
	Algorithm Pseudo-Code

	Experimental Setting
	Evaluation
	Evaluation Criteria
	Case Study: Video On Demand (VOD)
	Case Study: ArgoUML-SPL
	Case Study: MobileMedia (MM)
	Analysis

	Threats to Validity
	Related Work
	Conclusions and Future Work
	References

